Fouries Series
This is a
tutorial made solely for the purpose of education and it was designed
for students taking Applied Math 0340. It is primarily for students who
have some experience using Mathematica. If you have never used
Mathematica before and would like to learn more of the basics for this computer algebra system, it is strongly recommended looking at the APMA
0330 tutorial. As a friendly reminder, don'r forget to clear variables in use and/or the kernel.
Finally, the commands in this tutorial are all written in bold black font,
while Mathematica output is in regular fonts. This means that you can
copy and paste all commands into Mathematica, change the parameters and
run them. You, as the user, are free to use the scripts
to your needs for learning how to use the Mathematica program, and have
the
right to distribute this tutorial and refer to this tutorial as long as
this tutorial is accredited appropriately.
Return to
computing page for the first course APMA0330
Return to
computing page for the second course APMA0340
Return to
Mathematica tutorial for the first course APMA0330
Return to
Mathematica tutorial for the second course APMA0340
Return to the
main page for the course APMA0340
Return to the
main page for the course APMA0330
Return to
Part VI of the course APMA0340
This section is a collection of Fourier series expansions for different functions.
Theorem: If a periodic function of period \( 2\ell \) is
square-integrable on any finite interval, then the Fourier series converges to the function at almost every point:
\[
f(x) \,\sim \, \frac{a_0}{2} + \sum_{k\ge 0} \left[ a_k \cos \frac{k \pi x}{\ell} + b_k \sin \frac{k \pi x}{\ell} \right] ,
\]
where its coefficients are determined via Euler--Fourier formulas:
\[
\begin{split} a_k &= \frac{1}{\ell} \, \int_{-\ell}^{\ell} f(x)\,\cos \frac{k \pi x}{\ell} \, {\text d} x , \quad k=0,1,2,\ldots ,
\\
b_k &= \frac{1}{\ell} \, \int_{-\ell}^{\ell} f(x)\,\sin \frac{k \pi x}{\ell} \, {\text d} x , \quad k=1,2,\ldots .
\end{split} \qquad\qquad ■
\]
Some example:
\[
\sum_{n\ge 1} \frac{(-1)^{n+1}}{2n-1} \, \cos (2n-1) x =
\begin{cases}
\frac{\pi}{4} , & \ \mbox{for } |x|< \frac{\pi}{2} , \\
-\frac{\pi}{4} , & \ \mbox{for } |x|> \frac{\pi}{2} ,
\end{cases} \qquad \mbox{on interval } \ -\pi < x < \pi .
\]
\[
\sum_{n\ge 1} \frac{(-1)^{n+1}}{2n-1} \, \sin (2n-1) x = \frac{x}{2} , \qquad \mbox{on interval } \ -\pi < x < \pi .
\]
\[
e^x = \frac{2\,\sinh \pi}{\pi} \left[ \frac{1}{2} + \sum_{n\ge 0} \frac{(-1)^n}{1+n^2} \left( \cos nx -n\,\sin nx \right) \right] , \qquad \mbox{on interval } \ |x|< \pi .
\]
\[
\sin x = \frac{2}{\pi} - \frac{4}{\pi} \,\sum_{n\ge 1} \frac{1}{4n^2 -1} \, \cos 2nx , \qquad \mbox{on interval } \ 0\le x < \pi .
\]
\[
\sum_{n\ge 1} \frac{1}{2n-1} \, \cos (2n-1) x = \frac{1}{2}\,\ln \cot \frac{x}{2}
\qquad \mbox{on interval } \ 0 < x < \pi .
\]
\[
\sum_{n\ge 1} \frac{1}{2n-1} \, \sin (2n-1) x = \frac{\pi}{4} \times \begin{cases}
1 , & \ \mbox{for } 0< x , \\
- 1 , & \ \mbox{for } x<0 ,
\end{cases} \qquad \mbox{on interval } \ -\pi < x < \pi .
\]
\[
\frac{4}{\pi}\,\sum_{n\ge 1} \frac{1}{2n-1} \, \sin \frac{(2n-1)\pi x}{\ell} = 2 \left[ H\left( \frac{x}{\ell} \right) - H\left( \frac{x}{\ell} -1 \right) \right] -1 .
\]
\[
\sum_{n\ge 1} \frac{1}{n} \, \cos n x = -\frac{1}{2} \, \ln \left[ 2 \left( 1 - \cos x \right) \right] , \qquad \mbox{on interval } \ 0 < x < 2\pi ;
\]
\[
\sum_{n\ge 1} \frac{1}{n} \, \sin n x = \begin{cases}
\frac{\pi -x}{2} , & \ \mbox{for } 0< x , \\
- \frac{\pi +x}{2} , & \ \mbox{for } x<0 ,
\end{cases} \qquad \mbox{on interval } \ -\pi < x < \pi .
\]
\[
\sum_{n\ge 1} \frac{1}{n} \, \sin \frac{n\pi x}{\ell} = \frac{\ell-x}{2\ell}
.
\]
\[
\begin{split}
\sum_{n\ge 1} \frac{(-1)^{n+1}}{n} \, \cos n x &= \ln \left( 2 \, \cos \frac{x}{2} \right) , \qquad \mbox{on interval } \ |x| < \pi ;
\\
\sum_{n\ge 1} \frac{(-1)^{n+1}}{n} \, \sin n x &= \frac{x}{2} , \qquad \mbox{on interval } \ |x| < \pi .
\end{split}
\]
\[
\begin{split}
\frac{\pi^2}{12} + \sum_{n\ge 1} \frac{(-1)^{n+1}}{n^2} \, \cos n x &= x^2 , \qquad \mbox{on interval } \ |x| < \pi ;
\\
\sum_{n\ge 1} \frac{(-1)^{n+1}}{n^2} \, \sin n x &= ?? , \qquad \mbox{on interval } \ |x| < \pi .
\end{split}
\]
\[
\begin{split}
\frac{\pi^2}{16} + \sum_{n\ge 1} \frac{1}{n^2} \, \cos n x &= \frac{x^2}{4} - \frac{\pi x}{4} , \qquad \mbox{on interval } \ 0< x < < 2\pi ;
\\
\sum_{n\ge 1} \frac{1}{n^2} \, \sin n x &= ?? , \qquad \mbox{on interval } \ |x| < \pi .
\end{split}
\]
\[
\begin{split}
\sum_{n\ge 1} \frac{1}{(2n-1)^2} \, \cos (2n-1) x &= \frac{1}{2} - \frac{\pi |x|}{4} , \qquad \mbox{on interval } \ |x|< < \pi ;
\\
\sum_{n\ge 1} \frac{1}{(2n-1)^2} \, \sin (2n-1) x &= ?? , \qquad \mbox{on interval } \ |x| < \pi .
\end{split}
\]
\[
\begin{split}
\sum_{n\ge 1} \frac{1}{n^3} \, \cos n x &= ?? , \qquad \mbox{on interval } \ 0< x < < 2\pi ;
\\
\sum_{n\ge 1} \frac{1}{n^3} \, \sin n x &= \frac{\pi^2 x}{6} - \frac{\pi x^2}{4} + \frac{x^3}{12} , \qquad \mbox{on interval } \ 0 < x < 2\pi .
\end{split}
\]